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Axmoranua—B fannoll pabore TpefcTaBAeHH METOAM peWieHMs 3ajay KOHBEKTHBHOIO
TeNNoO0MEHa ¢ YYETOM DACHPOCTDAHEHNA Tella B TBEPAOM Telle, CONPUKACAIOLIIEMCA C
Apuakyuefica cpegoil. STUT METOJBl HABBAHBL METONAMK Pellen A CONPAKEHHBIX 3a7ay.

B uacrHocTH, B paboTe paccMaTpUBAETCH TeMIOOOMEH IIPH JIaMHHAPHOM TEYEHHHU MULKOCTH
B Kpyriof#t ¥ mpockolt Tpyfax ¢ y4eToM RUCCHNAIMM MeXaHWYeckoli aueprun. Kpome toro,
PaCCMATPUBAIOTCA KAK CTAMOHAPHEE, Tak M HECTAIMOHADHBIC 337A4M TeNNOOGMEHA IpH
06TeKaHHH NIACTHHBL CHKEMAEMOH MUAKOCTLIO. [Py 2TOM Tenuonepenoc B IMUTKOCTH BO BCEX
CTy4aAX PaccMATPUBAETCA BO B3aMMOCBASH ¢ NEPEHOCON TEIZa B CTEHHE TBEPHOTO Tea.

Ha ocuoBe 1101y 92HHOTO QaHAJNAA PEleHNH BBOZNTCA HOBBI KpUTepUil, HOTOPHI XapaKTe-

pesyeT BIMAHME TEILIOPU3MYECKUX CBOMCTB CTEHKH HA INPOLECC TeNI006MeHa.

Hdna

HINICTPAUUH PACCMATPUBARTCA HECKOTBKO KOHKPETHBIX NIPUMEPOR.

NOMENCLATURE & = (z/R), dimensionless spatial co-
T, temperature; n = (r/R), ordinates (internal prob-
0 = [T/x,(c0)}, dimensionless temperature lem);
(internal problem); y = (y/b), dimensionless spatial co-
h=(T/T,), dimensionless temperature ¢ = (x/b), ordinates (external prob-
{external problem); lem);
X1 temperature at the solid~ f, enthalpy;
fluid (gas) interface ; R, tube radius, R, — R, thick-
x = [X1/X1(o0)], dimensionless temperature ness of tube wall ;
at the conjugation boundary b, plate thickness;
(internal problem); A, thermal conductivity;
= {11/Tu) dimensionless temperature ¢, heat capacity;
at the solid-gas interface o, Prandtl number ;
(external problem); P, = (vgR/a), Péclét number;
1/ temperature of external tube \ Mach number;
) surface; o, parameter of generalized
¥ =[¥/x:(c0)} dimensionless tem»erature Fouriersinetransformation ;
of external tube surface; Fy{ay 1), confluent  hypergeometric
X, V22,7 V1, spatial coordinates ; function;
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hoo retardation temperature ;
h. recovery temperature:;
Ui, mean velocity;
3v H H
vo =5 Ar =g Fal =1+ = (1=n)

for a plane tube;
H H
Vo = 201§Az=ﬁ3F2(’7)= 1 —ﬁzln’l

for a circular tube:

R
f R
4v2 Pr
H=—"2_ = /R, );
C%I(OO) Y1 y\/( eoo)
Re=£3-lz; Reé=ﬁ; k=—c-":
v v Cy
B = > h, =" ;
\/(Reg) he - hb

{= 056705 pdy,

0
Subscripts and Superscripts

oz, referstomainflow parameters;

f. characteristicofasolid ;

w.  refers to the surface in a gas flow;

m=1, 2; m=1, a plane tube; m=2, a
circular tube.

ConvecTIVE heat transfer phenomena are of
great practical importance in many fields of
modern technology (missile and aircraft engineer-
ing, atomic power engineering).

Heat transfer problems in present-day high-
speed aeroplanes involving considerable heating
of the aerodynamic construction have become of
particular significance.

A great deal of research efforts, both experi-
mental and theoretical, has been devoted to
these problems [1-6].
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All these works are characterized by a general
way of treatment: first, the problem is solved for
the temperature distribution in the boundary
layer of the main stream under the prescribed
conditions at the surface, and the heat transfer
coefficient is calculated. Next comes considera-
tion of the heat transfer process in the solid.
At the solid—fluid interface there are formulated
the so-called third-kind boundary conditions
involving the heat transfer coefficient calculated
beforehand.

Thus, there is made an attempt to describe a
complexity of heat transfer processes between
the solid and the main stream by a single heat-
transfer coefficient (many empirical and semi-
empirical formulae have been obtained for its
determination).

In such a statement the mutual thermal effect
of the solid and the fluid is not allowed for, i.e.
heat transfer process appears to be independent
ofthesolid properties(thermophysical properties,
dimensions, source distribution, etc.).

This statement does not seem to be physically
strict. It is worth noting that, as it has become
known nowadays [35, 6], the third-kind boundary
conditions are not valid for many cases, since
they lead to contradictory or even physically
senseless results [3, 6].

Consideration of convective heat problems
as conjugated problems [7] appears to be
physically more strict, i.e. the energy equations
for fluid and solid are attacked together with
those of hydrodynamics; the temperatures and
heat fluxes at the solid-fluid interface being con-
sidered equal (the fourth-kind boundary con-
ditions are formulated).

This is the case when the mutual thermal
effect of the solid body and the fluid is already
taken into account contrary to the alternative
statement.

At present a number of publications devoted
to the solution of conjugated problems [7-9]
are available.

The common points in them are as follows:
only particular problems have been solved by
various methods that required physically not
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warranted simplifications in their statement;
neither new physical effects that should be
expected have been obtained nor general methods
of the conjugated problems have been developed.

Recently [10, 11] general methods for both
internal and external conjugated heat transfer
problems have been developed. These allowed
analytical solutions to be obtained in a rather
general statement for the cases of real physical
phenomena as well as new physical effects.

The present paper reports two general solu-
tion method for internal and external conjugated
problems of convective heat transfer.

1. INTERNAL CONJUGATED PROBLEMS

The general method developed for internal
heat transfer conjugated problems is based on
reducing the problem to a singular integral
equation for the unknown temperature of the
surface in a flow [11]. The method permits
exact solutions for the case of both steady- and
unsteady-state heat transfer in laminar and
turbulent flows to be obtained.

The present paper is restricted (because of
the lack of space) to consideration of a steady-
state heat transfer problem with laminar forced
convection in circular and plane tubes for the
developed Poiseuille velocity distribution with
allowance for mechanical energy dissipation.

1. Mathematically the problem reduces to a
solution of dimensionless equations for a fluid
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1 0 _,00
P1_2 Il ml_!
“ )66 11’””(%(" 6n>
2. 0gng1

+ Hn?; 0<é<w (1)

with the boundary conditions

GMI€=0=0mo 0m|{-'co=Am(1—’74)+1;
2

00,

3’1_"=0—0 9m‘r]=1 _Xm(é)a (3)

and of the equation for the solid

026, 1 0 _1)60,> 1g<ngé

m - m my _ 0

6£2+n""16n(1 on 0<t<w
4)

with the boundary conditions

9f'"l¢ =0= ofmo efmlc -0 = Fm(") (5)

Omln =1 =Xul®; Opmly =5 = ¥ul®. (6)

At the solid-fluid interface the conjugation
conditions are

emln =1 = efm'q =1 = xm(é)’ (7)
20, 30,
a. = . 8
Mlyg=1 0 |y=1 ®

Note, that the conditions at £ — oo in equations
(2) and (5) derive from a solution of the problem
stated at & — co.

2. Solutions (1)43) are easy to obtain by
applying the superposition principle in the form

© 4
em = Am(l - 7’4 - Z=:1 Anm an ('I) [ X(él)

0
o 9
x €Xp [— bnm (€ - él)] dél + Z Bnm an("l)exp [_ bnmé];
n=1
where
1
fRn (m)nt~ ' —nhdn, 2
Anm = - (1) -, = aan
(f)R m)nT (L —nddn,  Pu <6P,.m).,=1



1050 A. V. LUIKOV, V. A. ALEKSASHENKO and A. A. ALEKSASHENKO

i
2{ Ry (1) 17~ (1 = 0 3) [6p — An (1 — 7D d 1y
- 9 .
Bnm B {{aan:"iaan} . {6Rum:’i arf):LQ: 1

Ry = exp [— OS5 P, 7%1; Fy [, B Pam %15

1—-P 2-P
HZ—M; %= 4 B rBl:O.S; ﬂle; Pv%m""’“bnm'

Otlz

P, are the roots of the characteristic equation 3. The boundary-value problem solution for

_ the solid (4)}+6) is found by the generalized
1F s B Pr) = 0 (10) Fourier sine transformation
which can be found, for example, in [13].

-0 T

O =010+ lim 1< :{{[7{&) ]xm{b-w [&L{a) ]sha@z—n}

exp [— pa]

shob — 1) sinalda>; (11)

%-00

0= 1-025pHInn + I1mI < j{[x(cx}—ﬂ
[

Ko(08) Ioam) — 1o(ad) Kolom) _ j
1o Kofod) — 10 Kol®) | Glr.n3.2)
x [025 BHInn, — Y (o0)] dny Jexp [— pa] sinad do > ;

alK (an,) Io(ad) — Ko(ad) Io(an,)] i .
Io{dé) 10(05’?)» 1 € n S His

(12)

Gln,ny, 0) =

(o) I (d) — K, I
a[Kofom) Lof Izw) o)1) | s <n <o

Performing substitution of (9), (11) and (12) into  transform of the unknown function X,,(c)

the conjugation conditions (8), written for the w (1)

transforms, we obtain the equation for the ¢ (f)a, () — b, () | ?L"-—;dz = f,{t); (13}
o T —

where,
(am{t) = Xm(a); = 0{2.
= ’ 2
Ql(t) = ng - \/(t))g“I cth ‘\j(r}(& . 1)’

b2 +t

LD
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n=1
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4. Equation (13) is a singular integral equation
containing the Cauchy formulation (14). To
solve it, we take advantage of the concept of
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O 4, Ri(1)b,,
by(t) = 058 Z‘/m Cp ey,
— @O ¥,()
He) =~ EN; + B ZBM R, (1) bf‘ — By, cth \/(6) (8 hm
VK3 L/ + L6 /D K (/0]
B Ko[ 881 — Io(/t8) Ko(J1)T
1 NV Ay, R (1)b,,
by =3 ) At
1 7
b(:‘fL E{ fa (L1, /1)
HBlInp, Ko /D LJD + L6 /N K1) .
x ["3““" - ‘5“2‘@’} W1t LD KaoJD — Ty D KolD)
where
_an+bmi . fy)
Gl = a0~ bom 0= a0 — by 17

analytical extension to the complex region and
reduce equation (13) to the Riemann boundary-
value problem with discontinuity coefficients.
On introduction of the analytical function

8() = 5— ] 2L,

ni; 12

(14)

where contour L is a positive part of the real
axis. Using Sokhotsky-Plemel’s formulae, we
arrive at

olt) = ¢7(1) — 7(2); (13)

—f‘“)d_

Ri
Substitution of (15) and (16) into (13} yields
D7(1) = GOP(t) + g(t); 1)

D* (1) + &(2). (16}

The nonhomogeneous boundary-value Rie-
mann problem (15) may be solved in a general
form, if the problem index is not negative. It is
easy to demonstrate that for the present case the
index is zero [11] and solution (13) assumes the
form

o) =05 g(e®) [1 + G Ya?)] + 1G]
x exp [I{e)] x [1 — G~ }x?)]

oL f g y dy .
miy VGO v* = e?yexp [T(H)]’

where

(18)

I = —J }f 50 e,

2ni
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The desired temperatures 6,, and 6 ,,, are found
from equations (9). (11) and (12) by considering
(18) and the relationship in reference [12].

oc

xnl &) = (1/7) liﬁ(l) { 2mlo) exp [~ pa] sin o do.
=9 0

EXTERNAL CONJUGATED PROBLEMS

The general method developed for external
conjugated problems of convective heat transfer
is based upon series expansion with respect to
powers of the parameter of the generalized
Fourier sine transform of the temperature
profile for flow past a surface.

This method has permitted the authors to
obtain the solutions for both steady- and
unsteady-state heat transfer problems for a plate
in liquid or gas flows; to allow for radiation
effect [11] as well as injection (or suction); in
addition, by the method suggested the authors
have succeeded to obtain new criterion « for a
mutual thermal effect of the solid body and the
liquid.

The present paper is restricted to considera-
tion of a steady-state problem for a plate (length
L, thickness b, thermal conductivity A,) in a
longitudinal gas flow of constant velocity u,, and
temperature T at infinity; the internal surface
temperature is assumed to be constant (a similar
solution is obtained for the case when the flow
is prescribed over the internal surface).

Gas velocity is assumed to be temperature-
dependent and to follow a linear law ; the Prandtl
number is considered to be constant.

1. Mathematically the problem reduces to a
solution of dimensionless equations for the gas

0*h oh ,, Oh a(k — 1)
—(3—:7+o(pa—:—20qo éz%_ -
x M2 [o" (012 (19)
with the boundary conditions
Hlooo=he+ 2(8); hlion=1 (20)

and the equation for the solid
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0*h, 8%k,
@ T T

with the boundary conditions

0 (21)

éh,|
h - =h —f =0 (22
f'{ 0 00 66[{-.00 )

hely=o=het 1®: hylyoo i =hy

At the body-fluid interface the conjugation
conditions are given as

(23)

r—0.5 @
% o
_ Ohy
=7
Later on, the unknown function x(¢) is deter-
mined from the second conjugation condition
(24) for the flows.

As is known, in case of a linear dependence
of viscosity upon temperature, the hydrodynamic
problem is autonomous (i.e. functions ¢({),
©'(0), ¢"() are known, this is the ordinary
Blasius profile [3]).

The solution of problem (19) and (20) for the
gas is to be sought in the form

k-1

he=o=hy=0

{=0

(24)

y =0

g8 =1+ TMi.9(C) + h(,%): (25)
where
x &
9(0) =20 | [@"(C)]" A9 [0"(()]* ~°dY,: (26)
4 0

and h satisfies the boundary-value problem

o*h ok LR
6—C5+0'(p'a-——-20'¢652—-0,

Ble - o = 22): Bloww=0. (8

The generalized Fourier sine transformation

(27)

@«

ug(o) = uli_gno { w(€)sin af exp (—p&) dd

0

(29)

yields the transformed equations (27) and (28)

8*h, oh , ohy
’552”‘*'0'(,0—6—{4‘20'(0 (4] [ﬁs+a5&—]=0 (30)
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(31)

The solution of equations (30) and (31) is to be
found in a series form

hi(.0) =Y Cy Zyy o™

Bylc=o = 2@ Bliae = 0.

(32)

where Z(() satisfies the boundary-value problem
Z') + o@Z' () + 200’ (1 +v) Z(() =0: (33)
Z|j—o=1 Z (34)

C,, v, are constants to be determined later on.
Here the transform of the unknown function is

1d@) =) Cya™ (35)
The transformed solution (21)-23) with allow-
ance for (29) may be written as

_heo | sh(®)(1 +y)
hys = o +—m—xs(a)

fow = 0.

(koo — h)sh(w) (1 + y) + (h, — hoo)shay
asha )

(36)

Differentiation of equations (25) and (36) and
substitution of the results obtained into the
second conjugation condition (24) for flows
written for transforms yield the equation from
which constants v, and C, are determined

%Y C, A" *%%sha
k
= (hb - hoo) Ch o4 + hOO - hb + 0(2 Ckotv“Chot;
k

where

I(v, + 1) sin [(v, + 1)n/2]
(v, + 1-5) sin (v + 1-5)n,/2]

Ak = ka (O)F
x = 0522 /Re,.
j'f

Performing expansion in power series of the
functions entering into equation (37) and equat-
ing coefficients with like powers « give v, and C,
values determined by the formulae
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v =05k—-2): k=12...; j=12...;
(k—1/4)
Ak—1—4n Ck-1—4n
# Aoy Gy + % @n+ 1)!
[£r4]
Ck—4n .
- 4
2 (2n)! k# 4
n=1
(k=1/4)
AL—1—4nck—1—4n
A Cioy + 2 (n + 1]
n=1
[%/4]
Ck—4n hOO - he .
- ; k=4
Z e T k2 d

Applying V; and C, values obtained and invert-
ing by the formula

a“ezr(g:ll) sin [(““Lzl)”]; (38)

the desired temperature profile in a boundary
layer is determined from equation (35) as
MEL &) =1+ [k = 1/8] M3 ¥(0)
+ (hy — h) | [ €17 A o[ [@"(C1°dL) ™!
4 0
< [@")/e"(0]°& "+ 0252, 5(()¢ 2"
+025x% Z7.5(0) Z,(0)¢6 73
+0255°Z5(0)Z15(0) 2,5 (0E™?
+(75/2/16,/n)
®Zy5s(0)ZH0) 2500 Z5(0)E ™+ ...
(39
With { = 0 the surface temperature in a gas flow
is obtained from equation (39) as

hy = h|mo =hly=o = by + xZ_ ,(0)(hy— h,)
<705 4 025¢7%5 4 025%Z).5(0) ¢
+ 02552 Z5(0) Z,.5(0)E %S
+(7:52/16/n)

13 Z5.50)Z25(0)Z1 .50 *+.... (40)



1054

Note, that functions Z,, in equations (39)
and (40) with V, found are determined as the
boundary-value problem solution

Zy, +00Zy, +200'(1+V)Zy, =0

, i (41)
Zyli=o=1 Zy|ine =0

The exact solutions are obtained only for two

cases, when V; = — 1V, = — 0'5.
= ! [<P"(Cl)]“dC1(§ [o"(¢)1°dLy) ™
(42)
, _ [¢OF
Z_od) = [(p,,(o)] . @3)

With the other values of V; the functions Z,,
may be obtained only numerically which re-
quires an asymptotic solution of equation (41)
to be found first. The Blasius functions ¢({) and
¢'({) entering into equation (41) are not expressed
analytically but for large {({ > 3:5) they may be
represented as

() = 2A¢ - 086); ¢()=2. (=35 (44)
Substitution of (44) into (41) produces the
equation for large {
Z;, (0 +20( - 086)Z;, ()
+40(1 + v) Z({) =

Z\'k‘C"w =0 (45)
the solution of which is
; dzv +1
lv |c>3 5= CdCZI +1
{exp[— 0-5(C — 0-86)2]}. (46)
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Numerical calculation is performed with allow-
ance for (46), the constant C being determined at
the end of the calculation at { = 0. [11] reports
results obtained by the finite-difference method.
Note that functions Z,, at v, > 0 are non-
monotonous,

It should be emphasized that solutions (39)
and (40) include the new criterion

x=05 \/(R w) = 05 \/(u biVy),  (47)
which comprises characterlstlcs of both the
flow and the body. At 2 — 0 (that corresponds to
an infinite heat conductivity of a solid or
infinitesimal thickness of a plate b — 0) there is
obtained the known gas temperature profile in a

flow at constant temperature past a solid body

Cél—hm W& =1+ [(k—1)81MZ v(0)

+ (hy h)_f [@"(£4)1°dL, ( H(p”(C )]7dg,)™!
g 0 (48)

Generally speaking, the criterion » may take
on values from 0 to oo (for a majority of real
situations % is of an order of unity); note that
the extreme case ¥ — oo corresponds to thermal
insulation of a body in a flow, and ¥ — 0 is
characteristic of the case when use of Newton’s
iaw is possible with an error that may be found.

In all other cases (0 < » < oo) the heat transfer
coefficient may be only formally introduced.
Hence the Nusselt number with regard for
equation (40) is determined as

Nu(é) =

0-5 \/(Re; < 0664 F(Pr) — xZ"_,(0) [0-25 Z.5(0)¢~

+ 025 % Z5(0) Z,.4(0) £~ + 025 ¥2 Z}.5(0) Z5(0) Z}.5(0) £~ 35

+ (15 J2/16 ym) € Z35(0) ZH0) Z, (0 £ + ...

1>

w <14+ %Z_ (0)[E705 + 025E725 + 025 % Z,.4(0) &3

+ 025 %% Z/0) Z'-5(0) €735 + (75 /2/16 \/n) ®* Z,.5(0) Z5(0) Z-5(0) & + ..

J7h
49)
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It is easy to see that at x — 0 the well-known
Nusselt numbers are obtained from (49)

Nu* = lim Nu = 0332 /(Rep). J(Pr).  (50)
~+ 0

2. Consider two calculational examples by
formulae derived in [11]

(a) Poor conducting material (4, = 2-52
W/{mdeg): The plate is b = 0-0lm thick. The
flow characteristics are M, = 3; T, = 280°K;
T, =223°K v, = 954 x 10" ®m?%/s; 4, =204
x 1072 W/mdeg; U "' =900 m/s; u,? =
400 mys. In this case %V = 3:95; x*) = 2:64. By
equations(40)and (49) there have been calculated
the temperature of the surface and the Nusselt
numbers. The results are presented in Figs. 1
and 2.

08—
o6 3
v
oaf~ 7
oer— I
I | 1 1 1
0 50 60 70 B8O 90
3
FiG. 1

Fi1G. 2.

(b) Well conducting material (i, = 156
W/(mdeg: In this case »'' = 0:639. Calcula-
tional results similar to the first case are pre-
sented in Figs. 1 and 2.
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From the graphs obtained it is seen that h,
and Nu may differ considerably from those
usually used (at % — 0). Thus, in case (a) at
individual points Nu values differ several times
from the ordinary Nu*; the same refers to the
temperature of the surface in a flow (since at
x — 0, hw* = h,). At the same time for a good
conducting material h, and Nu values do not
differ very much (by not more than 25 per cent)
from the corresponding values of k¥ and Nu*
(for the case x — 0).
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Abstract—The present paper presents solution methods of convective heat transfer problems which take
into account heat propagation in the solid in contact with a moving fluid. The method is referred to as the
solution of conjugated problems.

In particular, the paper treats heat transfer in laminar fluid flow in circular and planar tubes with
allowance for the dissipation of mechanical energy. In addition, there are considered both steady-and
unsteady-state heat transfer problems for flow of a compressible fluid past a plate. In all cases heat transfer
in the fluid is discusscd in relation to that in a solid wall.

On the basis of the analysis of the solution a new criterion is introduced which characterizes the effect of
thermophysical properties of the wall on heat transfer. A few examples are considered for illustration
purposes.

METHODES ANALYTIQUES POUR DES PROBLEMES CONJUGUES
DE CONVECTION THERMIQUE

Résumé—Cet article concerne les méthodes de solution de problémes de convection thermique en tenant
compte de la propagation thermique dans un solide en contact avec un écoulement de fluide. La méthode
s’inspire de la recherche de la solution des problémes conjugués. En particulier, I’article traite le transfert
thermique dans un écoulement de fluide laminaire a I'intérieur de tubes circulaires et plans avec admission
d’énergie mécanique. De plus, on considére 2 la fois les problémes de transfert thermique stationnaire et
instationnaire pour une plaque dans un écoulement compressible. Dans tous les cas, le transfert de chaleur
dans le fluide est discuté en relation avec celui dans une paroi solide. A partir de cette analyse, on introduit
un nouveau critére qui caractérise I'effet des propriétés thermophysiques de la paroi sur le transfert thermique.
En illustration, on considére quelques exemples.

ANALYTISCHE METHODEN BE! KONVEKTIVER WARMEUBERTRAGUNG FUR
KONJUGIERTE PROBLEME

Zusammenfassung—Die vorliegende Arbeit berichtet iber Losungsmethoden fiir konvektive Warmeiiber-
tragungsprobleme unter Beriicksichtigung der Warmeausbreitung in einem festen Kérper der in Kontakt
mit einer Fliissigkeitsstromung ist.

Im Einzelnen wird die Wirmeiibertragung in einem zylindrischen und cbenen Rohr bei laminarer
Stromung und bei Beriicksichtigung der Reibung behandelt. Ausserdem wird sowohl das stationdre wie
instationiire Wirmeiibertragungsproblem fiir eine cbenc Platte bei kompressibler Strémung untersucht.
In allen Fiallen wird der Wirmestrom in der Fliissigkeit mit dem Wandwirmestrom des festen Korpers
verglichen und diskutiert.

Mit der analytischen Losung wird ein ncues Kriterium, das den Einfluss der thermo-physikalischen
Eigenschaften der Wand auf den Wiarmestrom charakterisiert, cingefiihrt. Das Problem wird an einigen
Beispielen erldutert.



