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Atfwraqn+-R ]gaHHOa pa6ioTe lSpi?ACTaBJieHbl ME?TOj&l peUieHSiR 3aAaY KOHBeKTHBHOfO 

TWUIOO6MeHa C YWTOM paCIlpOCTpaHeHMR TeJljla B TBepEOM TeJI@, conpk%Kacammemca C 

&BWKKy~etiCR CpeAOti. 3TBT MeTORb H3:~B~~ibI.M~TO~3M~lp~~eIlIIR COtIpfUKeHHbIX saaaq. 
R YaCTHOCTM,B pa6oTe paCCM3TpllB3eTCHTeIbJIOOCiMeKhpMllaMllHapHOM TeYeHBki HtMp;KOCTH 

B Kpyl'JrOti H l"mOCKOti Tpy6ax C YYeTOM fiMCCMnaqr?kl MeXaHnYeCKOfi 3HepmH. KpOMe TOPO, 

paCCMaTpHBaIOTCf3 K8K CTaL&EOHapHbIe, TaK ct KWT3~HOHapHble 3aRaYH TenzOO6MeHa lip&i 

06TeKaK~~ n~3CT~K~C~~lMae~O~ ~K~KOCTb~.~p~3TOM Ten~OnepeHOC B~K~KOCT~ BO BCeX 

CJIyYaKX paCCM3TpKBaeTCU BO B3a~MOCBX3~ C RepeHOCOE TeRna B CTeHKe TBepAOrO Ti?JIa. 

Ha OCHOBe IIOJIyYeHHOrO aHa~~33pe~eHK~BBO~~TC~HOB~~ Kp&iTeptll&KOTOpbIZtXapaKTe- 

pe3yeT BJIlfRHlile TeIIJIO&i3RYWKWX CBOtiCTB CTeHKH Ha IIpOl&?CC TeIIJIOO6MeHa. flnH 

KJIJIlOCTp3~KHpaCCM3TpABaeTCfi HeCKOJIbKO KOHKpeTHldX IIpklMepOB. 

NOMENCLATURE 

temperature ; 
dimensionless temperature 
(internal problem) ; 
d~ensionless tem~rature 
(external problem); 
temperature at the solid- 
fluid (gas) interface ; 
dimensionless temperature 
at the conjugation boundary 
(internal problem); 
dimensionless temperature 
at the solid-gas interface 
(external problem); 
temperature of external tube 
surface ; 
dimensionless temperature 
of external tube surface ; 
spatial coordinates ; 

dimensionless spatial co- 
ordinates (internal prob- 
lem) ; 
dimensionless spatial co- 
ordinates (external prob- 
lem) ; 
enthalpy ; 
tube radius, R, - R, thick- 
ness of tube wall ; 
plate thickness ; 
thermal conductivity ; 
heat capacity ; 
Prandtl number ; 
PC&t number ; 
Mach number ; 
parameter of generalized 
Fourier sine tr~sfo~ation ; 
confluent hypergeometric 
function ; 
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h 00. 

ho 
t’ l> 

retardation temperature ; 
recovery temperature : 

mean velocity ; 

210 = :; A, = f$ F,(q) = 1 + $1 - r) 

for a plane tube ; 

v. = 2v, ; A, = F2; F&) = 1 - /?T In q 

for a circular tube ; 

4v; Pf 
Hz------. 

cx,(=Y 
Y, = )I@, ,); 

&U.b; Re,=!!?; k=!E; 
1’ V C ” 

J.3 _ 2Nu(q. 
J(Rq)’ 

h = hw - 4 
w h,; 

4‘1 

;= 0.55-“.s $ pdy. 

Subscripts aid Superscripts 

K, 

$ 
IV. 

m= 

refers to main flow parameters ; 
characteristic of a solid ; 
refers to the surface in a gas flow ; 
1, 21 m = 1, a plane tube; m = 2, a 
circular tube. 

CONVECTIVE heat transfer phenomena are of 
great practical importance in many fields of 
modem technology (missile and aircraft engineer- 
ing, atomic power engineering). 

Consideration of convective heat problems 
as conjugated problems [7] appears to be 
physically more strict, i.e. the energy equations 
for fluid and solid are attacked together with 
those of hydrodynamics; the temperatures and 
heat fluxes at the solid-fluid interface being con- 
sidered equal (the fourth-kind boundary con- 
ditions are formulated). 

Heat transfer problems in present-day high- 
speed aeroplanes involving considerable heating 
of the aerodynamic construction have become of 
particular significance. 

This is the case when the mutual thermal 
effect of the solid body and the fluid is already 
taken into account contrary to the alternative 
statement. 

At present a number of publications devoted 
to the solution of conjugated problems [7-91 
are available. 

A great deal of research efforts, both experi- The common points in them are as follows: 
mental and theoretical, has been devoted to only particular problems have been solved by 
these problems [l-6]. various methods that required physically not 

All these works are characterized by a general 
way of treatment: first, the problem is solved for 
the temperature distribution in the boundary 
!ayer of the main stream under the prescribed 
conditions at the surface, and the heat transfer 
coefficient is calculated. Next comes considera- 
tion of the heat transfer process in the solid. 
At the solid-fluid interface there are formulated 
the so-called third-kind boundary conditions 
involving the heat transfer coefficient calculated 
beforehand. 

Thus, there is made an attempt to describe a 
complexity of heat transfer processes between 
the solid and the main stream by a single heat- 
transfer coefficient (many empirical and semi- 
empirical formulae have been obtained for its 
determination). 

In such a statement the mutual thermal effect 
of the solid and the fluid is not allowed for, i.e. 
heat transfer process appears to be independent 
ofthe solid properties (thermophysical properties, 
dimensions, source distribution, etc.). 

This statement does not seem to be physically 
strict, It is worth noting that, as it has become 
known nowadays [5,6], the third-kind boundary 
conditions are not valid for many cases, since 
they lead to contradictory or even physically 
senseless results [ 5,, 61. 
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warranted simplifications in their statement ; 
neither new physical effects that should be 
expected have been obtained nor general methods 
of the conjugated problems have been developed. 

Recently [lo, 111 general methods for both 
internal and external conjugated heat transfer 
problems have been developed. These allowed 
analytical solutions to be obtained in a rather 
general statement for the cases of real physical 
phenomena as well as new physical effects. 

The present paper reports two general solu- 
tion method for internal and external conjugated 
problems of convective heat transfer. 

1. INTERNAL CONJUGATED PROBLEMS (4) 
The general method developed for internal 

heat transfer conjugated problems is based on 
reducing the problem to a singular integral 
equation for the unknown temperature of the 
surface in a flow [ll]. The method permits 
exact solutions for the case of both steady- and 
unsteady-state heat transfer in laminar and 
turbulent flows to be obtained. 

with the boundary conditions 

e,,I, = o = e,,, %mle - a = F,(r) (5) 

e,,I, = 1 = uo; $-,1, = 6 = hm (6) 

At the solid-fluid interface the conjugation 
conditions are 

The present paper is restricted (because of 
the lack of space) to consideration of a steady- 
state heat transfer problem with laminar forced 
convection in circular and plane tubes for the 
developed Poiseuille velocity distribution with 
allowance for mechanical energy dissipation. 

1. Mathematically the problem reduces to a 
solution of dimensionless equations for a fluid 

e,l, = 1 = efmls = 1 = ur); (7) 

Note, that the conditions at 5 + 00 in equations 
(2) and (5) derive from a solution of the problem 
stated at 5 + co. 

2. Solutions (l)-(3) are easy to obtain by 
applying the superposition principle in the form 

with the boundary conditions 

&l1, = 0 = &I0 &I, * m = A,(1 - @) + 1 ; 

(2) 

ae, 
all,,,= 0 %Il, = 1 = &fm ; (3) 

and of the equation for the solid 

x exp [- L(5 - 5J dtl + f %,K,,(tl)exp [- b,,5]; 
II=1 

where 

I (9) 



P,, are the roots of the ch~acte~st~c equation 3. The bo~d~~-v~~c problem solution for 

1Fl@nt, Bm Pm) = 0 
which can be found, for example, in [137. 

(‘10) 
the solid (4H6) is found by the generalized 
Fourier sine transformation 

x exPC- WI 
sh ol(b - 1) 

sin iuc da > ; (11) 

Pe~or~~g subs~tutio~ of (9), (11) and (12) into transform of the unknown function x,(a) 
the conjugation conditions (Q written for the 
transforms, we obtain the equation for the CJ+&) ~~(~~ - b,(t) 7 @dt = f+(t); 

i, r---f (13) 

where, 

- am- 1 eth ,,/(Q (8 - 1); 
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4. Equation (13) is a singular integral equation 
cantoining the Cauchy formulation (14). To 
solve it, we take advantage of the concept of 
analy#ical extension to the ~Qmpfex regiw and 
reduce equation (13) to the Riemann boundary- 
value problem with discontinuity coefficients. 
On introduction of the analytical function 

where contour L is; a positive part of the real 
axis. Using Sokhatsky-PIemel’s formulae, we 
arrive at 

Substitution of (15) aBd (16) into f13) yields 

W(t) = G(t)@-(t) + g(t); (17) 

The nonhomogeneous boundary-value Rie- 
marm problem (15) may be solved in a general 
form, if the problem index is not negative. It is 
easy to demonstrate that for the present case the 
index is zero [ll] and solution (13) assumes the 
form 
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The desired temperatures /3,,, and 8,, are found 
from equations (9). (11) and (12) by considering 
(18) and the relationship in reference [ 12). 

x,(t) = (1~4 ;y 5 x,(4 exp [ - ~1 sin 4 du. 
- 0 

EXTERNAL CONJUGATED PROBLEMS 

The general method developed for external 
conjugated problems of convective heat transfer 
is based upon series expansion with respect to 
powers of the parameter of the generalized 
Fourier sine transform of the temperature 
profile for flow past a surface. 

This method has permitted the authors to 
obtain the solutions for both steady- and 
unsteady-state heat transfer problems for a plate 
in liquid or gas flows; to allow for radiation 
effect [ 1 l] as well as injection (or suction) ; in 
addition, by the method suggested the authors 
have succeeded to obtain new criterion K for a 
mutual thermal effect of the solid body and the 
liquid. 

The present paper is restricted to considera- 
tion of a steady-state problem for a plate (length 
L, thickness b, thermal conductivity A,) in a 
longitudinal gas flow of constant velocity u, and 
temperature T, at infinity ; the internal surface 
temperature is assumed to be constant (a similar 
solution is obtained for the case when the flow 
is prescribed over the internal surface). 

Gas velocity is assumed to be temperature- 
dependent and to follow a linear law ; the Prandtl 
number is considered to be constant. 

1. Mathematically the problem reduces to a 
solution of dimensionless equations for the gas 

a@ - 1) !?? + $$ - 2acp’$!! = _ ____ 
d12 i X 4 

x M2, [cp” K)12 (19) 

with the boundary conditions 

h[< = 0 = h,+ x(0: h[,+ m = 1 cw 

and the eqli;irion for the solid 

a2h, a2h, o 
-p+dy2= 

with the boundary conditions 

(21) 

h / I 5 + 0 = ho0 ah,1 
at1 =O (22) 

5-m 

$1, = o = he + x(t); h,(,, _ 1 = h,. (23) 

At the body-fluid interface the conjugation 
conditions are given as 

hi, = o = hsjy z 0; 

ah, I =-y;O. 

?Y 
(24) 

Later on, the unknown function ~(5) is deter- 
mined from the second conjugation condition 
(24) for the flows. 

As is known, in case of a linear dependence 
of viscosity upon temperature, the hydrodynamic 
problem is autonomous (i.e. functions (p(c), 
(p’(l), cp”([) are known, this is the ordinary 
Blasius profile [3]). 

The solution of problem (19) and (20) for the 
gas is to be sought in the form 

K,5) = 1 + y M2,Ni) + liK,O; (25) 

where 

s(c) = 20 7 [cp”(i,)]” d9: [~p”(i,)]~ - “d&i (26) 
6 0 

and Ii satisfies the boundary-value problem 

(27) 

q, = 0 = x(C) ; h( 0. i-co= (28) 

The generalized Fourier sine transformation 

U,(E) = ~li~o 7 u(t) sin g< exp (- ~0 d5 (29) 
b 

yields the transformed equations (27) and (28) 

a%, ah 
F+Ocp al 2+2arp’([) r;,++ =o (30) 

[ 1 
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h,l,=, = x,(a); &o = 0. (31) 1~~ = 0.5 (k - 2): k = 1,2.. . ; j = 1,2.. . ; 

The solution of equations (30) and (31) is to be 
(k-1/4) 

found in a series form x A,_, C,_, + x 
c 

An-l-4nG-1-4n 

(2n + l)! 

h,([, a) = 1 Ck Zvk auk ; 02) 
?I=1 

II P 4 
where Z(c) satisfies the boundary-value problem 

Z”(5) + acpz (0 + 2o(p’ (1 + 1’) Z(5) = 0: (33) 
-1 

G-4” -. k#4j 
(2n)! ’ 

n=t 

zI,=, = 1 ZI,,, = 0. (34) (I;- l/4) 

C,, vk are constants to be determined later on. 
Here the transform of the unknown function is 

%A,_, Ch-, + x 
c 

&,-4nCk-l-4n 

(2n + l)! 
n=l 

x,(a) = C Cvayk. (35) w41 

The transformed solution (21x23) with allow- 
- k = 4j 

’ 
ance for (29) may be written as n=l 

h 

fs 
_ ho0 I WW + Y) 

x,(a) 
Applying I$ and Ck values obtained and invert- 

a sh a ing by the formula 

2rccl + 1) 
(ho0 - U sh (4 (I+ Y) + (h, - hoobh ccy apti- 

n 5”” 
sin c/J + 1) n . 

[ 1 2 ’ 
(38) 

- 
a sh a 

the desired temperature profile in a boundary 
(36) layer is determined from equation (35) as 

Differentiation of equations (25) and (36) and 
substitution of the results obtained into the 

NC, 5) = 1 + IJk - lV81 AIf, ;K, 

second conjugation condition (24) for flows 
+ @b - kJ ; [cp”(t,)l”d Mj [cp”K,)l”dW1 

0 

written for transforms yield the equation from + x z’_ l(O) (hb - h&l 

which constants vk and C, are determined 
< [q”(~)/cp”(0)]“~-“‘5 + 0*25Z,.5(5)~-2’5 

xc Ck AkaYk +“‘5 sh a +0,25x Z;., (0) Z,(<)t- 3 

k + O.~~X~Z;(O)Z;.~(O)Z~.~(/J~-~‘~ 

=(h,-hoo)cha+hoo-h,+a~C,a’kcha; 
k 

+(7.542/16,/n) 

where 
x3z;.5(o)z;(o)z;.5(o)z3(~)~-4+ . . . . 

(39) 

4 = zv, (0) 
r(r,. + 1) sin [( w,: + l)ni2] 

r( v,. + 15) sin [( vk + 1*5)n/2] 
With c = 0 the surface temperature in a gas flow 
is obtained from equation (39) as 

” 

x = 0.5 5 ,/Re,. 
Lf h, = hl~,,=hl,=,=h,+xZ’_,(O)(h,-h,) 

Performing expansion in power series of the 
< t-o’5 + 0.25<-2’5 + 0.25~z;.,(O)<-~ 

functions entering into equation (37) and equat- 
+ 0~25x2Z;(0)Z’I.5(O)~-3’5 

ing coefficients with like powers a give vI, and C, + (7*542/16Jn) 

values determined by the formulae x32;.5(o)2;(o)2;.5(o)6-4 + . . . . (40) 
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Note, that functions Z, in equations (39) 
and (40) with I$ found are determined as the 
boundary-value problem solution 

z;, + ocpz;, + 2a(p’(l + v,) Z, = 0 

Z&o = 1 Z”I,([+m = 0. 
(41) 

The exact solutions are obtained only for two 
cases, when V, = - 1, V, = - 05. 

z-,(0 = r [v’K,)l”d5, (f [VKJ”dT,)-’ : 

(42) 

rp”K) a 
Z-,.,(0 = - . 

[ 1 cp”(0) 
(43) 

With the other values of K the functions Zv, 
may be obtained only numerically which re- 
quires an asymptotic solution of equation (41) 
to be found first. The Blasius functions cp([) and 
cp’([) entering into equation (41) are not expressed 
analytically but for large [(c 2 35) they may be 
represented as 

(p(5) E 2([ - 0.86); (p’(l) = 2; r 2 3.5. (44) 

Substitution of (44) into (41) produces the 
equation for large c 

“Yk ([) + 20([ - 0.86)&, (5) 

+ 4cr(l + Vk)Z(C) = 0 

Z,‘r(@m = 0 (45) 

the solution of which is 

((33.5 = 

{exp [ - O.S(l - 086)2]}. (46) 

Numerical calculation is performed with allow- 
ance for (46) the constant C being determined at 
the end of the calculation at 5 = 0. [ll] reports 
results obtained by the finite-difference method. 
Note that functions Z,, at Ye > 0 are non- 
monotonous. 

It should be emphasized that solutions (39) 
and (40) include the new criterion 

x = 0.5$(Re,) = 0*5+” ,blT/,); (47) 
I 

which comprises characteristics of both the 
flow and the body. At 2 + 0 (that corresponds to 
an infinite heat conductivity of a solid or 
infinitesimal thickness of a plate b + 0) there is 
obtained the known gas temperature profile in a 
flow at constant temperature past a solid body 

Generally speaking, the criterion x may take 
on values from 0 to co (for a majority of real 
situations x is of an order of unity); note that 
the extreme case x + co corresponds to thermal 
insulation of a body in a flow, and x + 0 is 
characteristic of the case when use of Newton’s 
iaw is possible with an error that may be found. 

In all other cases (0 < x < 00) the heat transfer 
coefficient may be only formally introduced. 
Hence the Nusselt number with regard for 
equation (40) is determined as 

Nu(<) = O-5 J(R eg < O-664 Y(Pr) - xZ’_ 1(O) [0.25 Z;.,(0)t-2’5 

+ 0.25 x Z;(O) Z;.,(O) t-3 + 0.25 x2 Z;.,(O) Z’,(O) z;.,(O) {-3’5 

+ (7.5 d2/16 ,/x) x3 Z;.,(O) Z;(O) Z;.,(O) <-” + . . . ] > 

x < 1 + xZ’_,(O) [<-o’5 + 0.25 r-2’5 + 025 xZ;.,(O)~-~ 

+ 0.25 x2 ZXO) Z;.,(O) t-3’5 + (7.5 ,/2/16 J ) ?I x3 &.5(O) z;(o) z;.,(o) <-’ + . . *] -1. 

(49) 
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It is easy to see that at x + 0 the well-known 
Nusselt numbers are obtained from (49) 

Nu* = lirn~~ = 0,332 ,,@eJ . .$‘(I+). (50) 

2. Consider* two calculational examples by 
formulae derived in [ 1 l] 

(a) Poor conducting material (As = 2.52 
W/(mdeg): The plate is b = O.Olm thick. The 
flow characteristics are M, = 3 ; q = 280°K ; 
‘Tb, = 223°K 11, = 9.54 x 10-6m2;s* 3 = 2.04 
x lo-’ W/mdeg; U,(l) = 900 m/s’; 1m~,(2) = 

400 mjs. In this case x(l) = 3.95; zc2) = 2.64. By 
equations (40) and (49) there have been calculated 
the temperature of the surface and the Nusselt 
numbers. The results are presented in Figs. 1 
and 2. 

I I I I 1 I I I 1 

l-s :i~ ~~~_I 

0 IO 20 30 40 50 60 70 80 90 

E 

FIG. 1. 

I ’ ’ ’ ’ I I I I I 

2.0 

I.0 

III I I I III I 
0 IO 20 30 40 50 60 70 80 90 

t 

FIG. 2. 

(b) Well conducting material (Af = 15.6 
W/(mdeg: In this case x(l) = 0.639. Calcula- 
tional results similar to the first case are pre- 

From the graphs obtained it is seen that h, 
and Nu may differ considerably from those 
usually used (at x + 0). Thus, in case (a) at 
individua1 points NU values differ several times 
from the ordinary Nu * ; the same refers to the 
temperature of the surface in a flow (since at 
x+0, hti = hb). At the same time for a good 
conducting material h, and Nu values do not 
differ very much (by not more than 25 Der cent) I 

from the corresponding 
(for the case x -+ 0). 

values of h$ and Nu* 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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Abstract-The present paper presents solution methods of convective heat transfer problems which take 
into account heat propagation in the solid in contact with a moving fluid. The method is referred to as the 
solution of conjugated problems. 

In particular, the paper treats heat transfer in laminar fluid flow in circular and planar tubes with 
allowance for the dissipation of mechanical energy. In addition, there are considered both steady-and 
unsteady-state heat transfer problems for flow of a compressible fluid past a plate. In all cases heat transfer 
in the fluid is discussed in relation to that in a solid wall. 

On the basis of the analysis of the solution a new criterion is introduced which characterizes the effect of 
thermophysical properties of the wall on heat transfer. A few examples are considered for illustration 
purposes. 

METHODES ANALYTIQUES POUR DES PROBLEMES CONJUGUES 
DE CONVECTION THERMIQUE 

R&me-Cet article concerne les methodes de solution de problemes de convection thermique en tenant 
compte de la propagation thermique dans un solide en contact avec un Ccoulement de fluide. La methode 
s’inspire de la recherche de la solution des problemes conjuguts. En particulier, l’article traite le transfert 
thermique dans un tcoulement de fluide laminaire a I’inttrieur de tubes circulaires et plans avec admission 
d’energie mecanique. De plus, on considbre a la fois les problemes de transfert thermique stationnaire et 
instationnaire pour une plaque dans un ircoulement compressible. Dans tous les cas, le transfert de chaleur 
dans le fluide est discute en relation avec celui dans une paroi solide. A partir de cette analyse, on introduit 
un nouveau crittre qui caracterisel’effet des proprietes thermophysiques de la paroi sur le transfert thermique. 

En illustration, on considbre quelques exemples. 

ANALYTISCHE METHODEN BE1 KONVEKTIVER WARMEUBERTRAGUNG FUR 
KONJUGIERTE PROBLEME 

Zusammenfassung-Die vorliegende Arbeit berichtet iiber Lbsungsmethoden ftir konvektive Warmciiber- 
tragungsprobleme unter Beriicksichtigung der Wlrmeausbreitung in einem festen K&per der in Kontakt 
mit einer Flilssigkeitsstrijmung ist. 

Im Einzelnen wird die Wlrmetibertragung in einem zylindrischen und cbenen Rohr bei laminarer 
Striimung und bei Berticksichtigung der Reibung behandelt. Ausserdem wird sowohl das stationare wie 
instationare Wlrmetibertragungsproblem ftir eine cbene Platte bei kompressibler Stromung untersucht. 
In allen Fallen wird der Warmestrom in der Fltissigkeit mit dem Wandwlrmestrom des festen Kiirper\ 
verglichen und diskutiert. 

Mit der analytischen Losung wird ein ncues Kriterium. das den Einfluss der thermo-physikalischen 
Eigenschaften der Wand auf den Warmestrom charakterisiert, cingeftihrt. Das Problem wird an einigen 
Beispielen erllutert. 


